If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16r^2+24r-9=0
a = 16; b = 24; c = -9;
Δ = b2-4ac
Δ = 242-4·16·(-9)
Δ = 1152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1152}=\sqrt{576*2}=\sqrt{576}*\sqrt{2}=24\sqrt{2}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24\sqrt{2}}{2*16}=\frac{-24-24\sqrt{2}}{32} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24\sqrt{2}}{2*16}=\frac{-24+24\sqrt{2}}{32} $
| 3x/2+2-5=14-6x | | 10x+15+5x=150 | | 10y^2+15=0 | | 81+x^2=9 | | 8x=4×^2+2x | | 10^2t=20 | | 9y*2-6y+1=0 | | 4(x-2)-3=5(3-x)+1 | | 18=30/r | | (3x/5)+4=7 | | 18=30r | | 3+9x=-24 | | 5/x=30/54 | | 3/x=27/54 | | 0.3*2.2+0.7*x=5 | | 2/7x+2=0 | | 8x+16=9x | | 6(x-4)=5(x+8) | | y/2+11=30 | | 3x/2+6=7 | | 0.14-3.3=0.46x+0.07 | | 0.01(x-6)=130 | | 0.14x-3.3=0.46x+0.07 | | a=2(0,25)/(0,21*2) | | -2x^2+9x+16=0 | | (z+7)(z+7)=25 | | 10m−16=11m+12 | | 2(4x-7)-3=3x+9 | | (4x+2)+(4x+2)+(3x+3)+(3x+3)=150 | | x/5+8=−2 | | 3(6x-9)=-3(8x-17) | | Y+2=3/2(x+2) |